Queueing Analysis of Continuous Queries for Uncertain Data Streams Over Sliding Windows

نویسندگان

  • Guoqing Xiao
  • Kenli Li
  • Xu Zhou
  • Keqin Li
چکیده

With the rapid development of data collection methods and their practical applications, the management of uncertain data streams has drawn wide attention in both academia and industry. System capacity planning and Quality of service (QoS) metrics are two very important problems for data stream management systems (DSMSs) to process streams e±ciently due to unpredictable input characteristics and limited memory resource in the system. Motivated by this, in this paper, we explore an e®ective approach to estimate the memory requirement, data loss ratio, and tuple latency of continuous queries for uncertain data streams over sliding windows in a DSMS. More speci ̄cally, we propose a queueing model to address these problems in this paper. We study the average number of tuples, average tuple latency in the queue, and the distribution of the number of tuples and tuple latency in the queue under the Poisson arrival of input data streams in our queueing model. Furthermore, we also determine the maximum capacity of the queueing system based on the data loss ratio. The solutions for the above problems are very important to help researchers design, manage, and optimize a DSMS, including allocating bu®er needed for a queue and admitting a continuous uncertain query to the system without violation of the pre-speci ̄ed QoS requirements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

Querying Sliding Windows Over Online Data Streams

A data stream is a real-time, continuous, ordered sequence of items generated by sources such as sensor networks, Internet traffic flow, credit card transaction logs, and on-line financial tickers. Processing continuous queries over data streams introduces a number of research problems, one of which concerns evaluating queries over sliding windows defined on the inputs. In this paper, we descri...

متن کامل

Processing Sliding Window Multi-Joins in Continuous Queries over Data Streams

We study sliding window multi-join processing in continuous queries over data streams. Several algorithms are reported for performing continuous, incremental joins, under the assumption that all the sliding windows fit in main memory. The algorithms include multiway incremental nested loop joins (NLJs) and multi-way incremental hash joins. We also propose join ordering heuristics to minimize th...

متن کامل

ارائه روشی پویا جهت پاسخ به پرس‌وجوهای پیوسته تجمّعی اقتضایی

Data Streams are infinite, fast, time-stamp data elements which are received explosively. Generally, these elements need to be processed in an online, real-time way. So, algorithms to process data streams and answer queries on these streams are mostly one-pass. The execution of such algorithms has some challenges such as memory limitation, scheduling, and accuracy of answers. They will be more ...

متن کامل

Sketch-based Querying of Distributed Sliding-Window Data Streams

While traditional data-management systems focus on evaluating single, adhoc queries over static data sets in a centralized setting, several emerging applications require (possibly, continuous) answers to queries on dynamic data that is widely distributed and constantly updated. Furthermore, such query answers often need to discount data that is “stale”, and operate solely on a sliding window of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJPRAI

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2016